Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Brain ; 147(4): 1331-1343, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38267729

ABSTRACT

Cortical myelin loss and repair in multiple sclerosis (MS) have been explored in neuropathological studies, but the impact of these processes on neurodegeneration and the irreversible clinical progression of the disease remains unknown. Here, we evaluated in vivo cortical demyelination and remyelination in a large cohort of people with all clinical phenotypes of MS followed up for 5 years using magnetization transfer imaging (MTI), a technique that has been shown to be sensitive to myelin content changes in the cortex. We investigated 140 people with MS (37 clinically isolated syndrome, 71 relapsing-MS, 32 progressive-MS), who were clinically assessed at baseline and after 5 years and, along with 84 healthy controls, underwent a 3 T-MRI protocol including MTI at baseline and after 1 year. Changes in cortical volume over the radiological follow-up were computed with a Jacobian integration method. Magnetization transfer ratio was employed to calculate for each patient an index of cortical demyelination at baseline and of dynamic cortical demyelination and remyelination over the follow-up period. The three indices of cortical myelin content change were heterogeneous across patients but did not significantly differ across clinical phenotypes or treatment groups. Cortical remyelination, which tended to fail in the regions closer to CSF (-11%, P < 0.001), was extensive in half of the cohort and occurred independently of age, disease duration and clinical phenotype. Higher indices of cortical dynamic demyelination (ß = 0.23, P = 0.024) and lower indices of cortical remyelination (ß = -0.18, P = 0.03) were significantly associated with greater cortical atrophy after 1 year, independently of age and MS phenotype. While the extent of cortical demyelination predicted a higher probability of clinical progression after 5 years in the entire cohort [odds ratio (OR) = 1.2; P = 0.043], the impact of cortical remyelination in reducing the risk of accumulating clinical disability after 5 years was significant only in the subgroup of patients with shorter disease duration and limited extent of demyelination in cortical regions (OR = 0.86, P = 0.015, area under the curve = 0.93). In this subgroup, a 30% increase in cortical remyelination nearly halved the risk of clinical progression at 5 years, independently of clinical relapses. Overall, our results highlight the critical role of cortical myelin dynamics in the cascade of events leading to neurodegeneration and to the subsequent accumulation of irreversible disability in MS. Our findings suggest that early-stage myelin repair compensating for cortical myelin loss has the potential to prevent neuro-axonal loss and its long-term irreversible clinical consequences in people with MS.


Subject(s)
Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis , Humans , Myelin Sheath/pathology , Multiple Sclerosis/pathology , Multiple Sclerosis, Chronic Progressive/diagnostic imaging , Multiple Sclerosis, Chronic Progressive/pathology , Disease Progression , Atrophy/pathology
2.
J Neurol Sci ; 454: 120833, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37866195

ABSTRACT

BACKGROUND: Besides demographics and clinical factors, psychological variables and brain-tissue changes have been associated with fatigue in persons with multiple sclerosis (pwMS). Identifying predictors of fatigue could help to improve therapeutic approaches for pwMS. Therefore, we investigated predictors of fatigue using a multifactorial approach. METHODS: 136 pwMS and 49 normal controls (NC) underwent clinical, neuropsychological, and magnetic resonance imaging examinations. We assessed fatigue using the "Fatigue Scale for Motor and Cognitive Functions", yielding a total, motor, and cognitive fatigue score. We further analyzed global and subcortical brain volumes, white matter lesions and microstructural changes (examining fractional anisotropy; FA) along the cortico striatal thalamo cortical (CSTC) loop. Potential demographic, clinical, psychological, and magnetic resonance imaging predictors of total, motor, and cognitive fatigue were explored using multifactorial linear regression models. RESULTS: 53% of pwMS and 20% of NC demonstrated fatigue. Besides demographics and clinical data, total fatigue in pwMS was predicted by higher levels of depression and reduced microstructural tissue integrity in the CSTC loop (adjusted R2 = 0.52, p < 0.001). More specifically, motor fatigue was predicted by lower education, female sex, higher physical disability, higher levels of depression, and self-efficacy (adjusted R2 = 0.54, p < 0.001). Cognitive fatigue was also predicted by higher levels of depression and lower self-efficacy, but in addition by FA reductions in the CSTC loop (adjusted R2 = 0.45, p < 0.001). CONCLUSIONS: Our results indicate that depression and self-efficacy strongly predict fatigue in MS. Incremental variance in total and cognitive fatigue was explained by microstructural changes along the CSTC loop, beyond demographics, clinical, and psychological variables.


Subject(s)
Multiple Sclerosis , Humans , Female , Multiple Sclerosis/complications , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Depression , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging , Cognition
3.
Ther Adv Neurol Disord ; 16: 17562864231180715, 2023.
Article in English | MEDLINE | ID: mdl-37363185

ABSTRACT

Background: Recently, arterial stiffness has been associated with cerebral small vessel disease (SVD), brain atrophy and vascular dementia. Arterial stiffness is assessed via pulse wave velocity (PWV) measurement and is strongly dependent on arterial blood pressure. While circadian blood pressure fluctuations are important determinants of end-organ damage, the role of 24-h PWV variability is yet unclear. Objectives: We here investigated the association between PWV and its circadian changes on brain morphology and cognitive function in community-dwelling individuals. Design: Single-centre, prospective, community-based follow-up study. Methods: The study cohort comprised elderly community-based participants of the Austrian Stroke Prevention Family Study which was started in 2006. Patients with any history of cerebrovascular disease or dementia were excluded. The study consists of 84 participants who underwent ambulatory 24-h PWV measurement. White matter hyperintensity volume and brain volume were evaluated by 3-Tesla magnetic resonance imaging (MRI). A subgroup of patients was evaluated for cognitive function using an extensive neuropsychological test battery. Results: PWV was significantly related to reduced total brain volume (p = 0.013), which was independent of blood pressure and blood pressure variability. We found no association between PWV with markers of cerebral SVD or impaired cognitive functioning. Only night-time PWV values were associated with global brain atrophy (p = 0.005). Conclusions: This study shows a relationship of arterial stiffness and reduced total brain volume. Elevations in PWV during night-time are of greater importance than day-time measures.

4.
Eur J Neurol ; 30(5): 1389-1399, 2023 05.
Article in English | MEDLINE | ID: mdl-36779855

ABSTRACT

BACKGROUND AND PURPOSE: Serum neurofilament light chain (sNfL) is a promising biomarker of neuroaxonal damage in persons with multiple sclerosis (pwMS). In cross-sectional studies, sNfL has been associated with disease activity and brain magnetic resonance imaging (MRI) changes; however, it is still unclear to what extent in particular high sNfL levels impact on subsequent disease evolution. METHODS: sNfL was quantified by an ultrasensitive single molecule array (Simoa) in 199 pwMS (median age = 34.2 years, 64.3% female) and 49 controls. All pwMS underwent 3-T MRI to assess global and compartmental normalized brain volumes, T2-lesion load, and cortical mean thickness. Follow-up data and serum samples were available in 144 pwMS (median follow-up time = 3.8 years). Linear and binary logistic models were used to estimate the independent contribution of sNfL for changes in MRI and Expanded Disability Status Scale (EDSS). Age-corrected sNfL z-scores from a normative database of healthy controls were used for sensitivity analyses. RESULTS: High sNfL levels at baseline were associated with atrophy measures of the whole brain (standardized beta coefficient ßj = -0.352, p < 0.001), white matter (ßj = -0.229, p = 0.007), thalamus (ßj = -0.372, p = 0.004), and putamen (ßj = -1.687, p = 0.012). pwMS with high levels of sNfL at baseline and follow-up had a greater risk of EDSS worsening (p = 0.007). CONCLUSIONS: Already single time point elevation of sNfL has a distinct effect on brain volume changes over a short-term period, and repeated high levels of sNfL indicate accumulating physical disability. Serial assessment of sNfL may provide added value in the clinical management of pwMS.


Subject(s)
Central Nervous System Diseases , Multiple Sclerosis , Neurodegenerative Diseases , Humans , Female , Adult , Male , Multiple Sclerosis/pathology , Cross-Sectional Studies , Intermediate Filaments , Brain/diagnostic imaging , Brain/pathology , Biomarkers , Neurofilament Proteins , Atrophy/pathology , Neurodegenerative Diseases/pathology
5.
Sci Rep ; 12(1): 20254, 2022 11 24.
Article in English | MEDLINE | ID: mdl-36424437

ABSTRACT

Deep neural networks are increasingly used for neurological disease classification by MRI, but the networks' decisions are not easily interpretable by humans. Heat mapping by deep Taylor decomposition revealed that (potentially misleading) image features even outside of the brain tissue are crucial for the classifier's decision. We propose a regularization technique to train convolutional neural network (CNN) classifiers utilizing relevance-guided heat maps calculated online during training. The method was applied using T1-weighted MR images from 128 subjects with Alzheimer's disease (mean age = 71.9 ± 8.5 years) and 290 control subjects (mean age = 71.3 ± 6.4 years). The developed relevance-guided framework achieves higher classification accuracies than conventional CNNs but more importantly, it relies on less but more relevant and physiological plausible voxels within brain tissue. Additionally, preprocessing effects from skull stripping and registration are mitigated. With the interpretability of the decision mechanisms underlying CNNs, these results challenge the notion that unprocessed T1-weighted brain MR images in standard CNNs yield higher classification accuracy in Alzheimer's disease than solely atrophy.


Subject(s)
Alzheimer Disease , Deep Learning , Humans , Middle Aged , Aged , Aged, 80 and over , Alzheimer Disease/diagnostic imaging , Head , Brain/diagnostic imaging , Atrophy
6.
Aging (Albany NY) ; 14(16): 6415-6426, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35951362

ABSTRACT

BACKGROUND: While iron is essential for normal brain functioning, elevated concentrations are commonly found in neurodegenerative diseases and are associated with impaired cognition and neurological deficits. Currently, only little is known about genetic and environmental factors that influence brain iron concentrations. METHODS: Heritability and bivariate heritability of regional brain iron concentrations, assessed by R2* relaxometry at 3 Tesla MRI, were estimated with variance components models in 130 middle-aged to elderly participants of the Austrian Stroke Prevention Family Study. RESULTS: Heritability of R2* iron ranged from 0.46 to 0.82 in basal ganglia and from 0.65 to 0.76 in cortical lobes. Age and BMI explained up to 12% and 9% of the variance of R2* iron, while APOE ε4 carrier status, hypertension, diabetes, hypercholesterolemia, sex and smoking explained 5% or less. The genetic correlation of R2* iron among basal ganglionic nuclei and among cortical lobes ranged from 0.78 to 0.87 and from 0.65 to 0.97, respectively. R2* rates in basal ganglia and cortex were not genetically correlated. CONCLUSIONS: Regional brain iron concentrations are mainly driven by genetic factors while environmental factors contribute to a certain extent. Brain iron levels in the basal ganglia and cortex are controlled by distinct sets of genes.


Subject(s)
Basal Ganglia , Iron , Aged , Brain , Cerebral Cortex/diagnostic imaging , Humans , Magnetic Resonance Imaging , Middle Aged
7.
Neuroimage Clin ; 35: 103114, 2022.
Article in English | MEDLINE | ID: mdl-35908307

ABSTRACT

BACKGROUND: DTI is sensitive to white matter (WM) microstructural damage and has been suggested as a surrogate marker for phase 2 clinical trials in cerebral small vessel disease (SVD). The study's objective is to establish the best way to analyse the diffusion-weighted imaging data in SVD for this purpose. The ideal method would be sensitive to change and predict dementia conversion, but also straightforward to implement and ideally automated. As part of the OPTIMAL collaboration, we evaluated five different DTI analysis strategies across six different cohorts with differing SVD severity. METHODS: Those 5 strategies were: (1) conventional mean diffusivity WM histogram measure (MD median), (2) a principal component-derived measure based on conventional WM histogram measures (PC1), (3) peak width skeletonized mean diffusivity (PSMD), (4) diffusion tensor image segmentation θ (DSEG θ) and (5) a WM measure of global network efficiency (Geff). The association between each measure and cognitive function was tested using a linear regression model adjusted by clinical markers. Changes in the imaging measures over time were determined. In three cohort studies, repeated imaging data together with data on incident dementia were available. The association between the baseline measure, change measure and incident dementia conversion was examined using Cox proportional-hazard regression or logistic regression models. Sample size estimates for a hypothetical clinical trial were furthermore computed for each DTI analysis strategy. RESULTS: There was a consistent cross-sectional association between the imaging measures and impaired cognitive function across all cohorts. All baseline measures predicted dementia conversion in severe SVD. In mild SVD, PC1, PSMD and Geff predicted dementia conversion. In MCI, all markers except Geff predicted dementia conversion. Baseline DTI was significantly different in patients converting to vascular dementia than to Alzheimer' s disease. Significant change in all measures was associated with dementia conversion in severe but not in mild SVD. The automatic and semi-automatic measures PSMD and DSEG θ required the lowest minimum sample sizes for a hypothetical clinical trial in single-centre sporadic SVD cohorts. CONCLUSION: DTI parameters obtained from all analysis methods predicted dementia, and there was no clear winner amongst the different analysis strategies. The fully automated analysis provided by PSMD offers advantages particularly for large datasets.


Subject(s)
Cerebral Small Vessel Diseases , Dementia , White Matter , Biomarkers , Cerebral Small Vessel Diseases/complications , Cross-Sectional Studies , Dementia/complications , Diffusion Tensor Imaging/methods , Humans , White Matter/diagnostic imaging
8.
Neuroimage ; 257: 119303, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35568345

ABSTRACT

Extracellular free water (FW) increases are suggested to better provide pathophysiological information in brain aging than conventional biomarkers such as fractional anisotropy. The aim of the present study was to determine the relationship between conventional biomarkers, FW in white matter hyperintensities (WMH), FW in normal appearing white matter (NAWM) and in white matter tracts and executive functions (EF) with a speed component in elderly persons. We examined 226 healthy elderly participants (median age 69.83 years, IQR: 56.99-74.42) who underwent brain MRI and neuropsychological examination. FW in WMH and in NAWM as well as FW corrected diffusion metrics and measures derived from conventional MRI (white matter hyperintensities, brain volume, lacunes) were used in partial correlation (adjusted for age) to assess their correlation with EF with a speed component. Random forest analysis was used to assess the relative importance of these variables as determinants. Lastly, linear regression analyses of FW in white matter tracts corrected for risk factors of cognitive and white matter deterioration, were used to examine the role of specific tracts on EF with a speed component, which were then ranked with random forest regression. Partial correlation analyses revealed that almost all imaging metrics showed a significant association with EF with a speed component (r = -0.213 - 0.266). Random forest regression highlighted FW in WMH and in NAWM as most important among all diffusion and structural MRI metrics. The fornix (R2=0.421, p = 0.018) and the corpus callosum (genu (R2 = 0.418, p = 0.021), prefrontal (R2 = 0.416, p = 0.026), premotor (R2 = 0.418, p = 0.021)) were associated with EF with a speed component in tract based regression analyses and had highest variables importance. In a normal aging population FW in WMH and NAWM is more closely related to EF with a speed component than standard DTI and brain structural measures. Higher amounts of FW in the fornix and the frontal part of the corpus callosum leads to deteriorating EF with a speed component.


Subject(s)
Healthy Aging , Leukoaraiosis , White Matter , Aged , Biomarkers , Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging/methods , Executive Function/physiology , Humans , Water , White Matter/diagnostic imaging
9.
Neuroimage Clin ; 34: 103012, 2022.
Article in English | MEDLINE | ID: mdl-35487133

ABSTRACT

OBJECTIVE: Recent studies suggested that CSF-mediated factors contribute to periventricular (PV) T2-hyperintense lesion formation in multiple sclerosis (MS) and this in turn correlates with cortical damage. We thus investigated if such PV-changes are observable microstructurally in early-MS and if they correlate with cortical damage. METHODS: We assessed the magnetisation transfer ratio (MTR) in PV normal-appearing white matter (NAWM) and in MS lesions in 44 patients with a clinically isolated syndrome (CIS) suggestive of MS and 73 relapsing-remitting MS (RRMS) patients. Band-wise MTR values were related to cortical mean thickness (CMT) and compared with 49 healthy controls (HCs). For each band, MTR changes were assessed relative to the average MTR values of all HCs. RESULTS: Relative to HCs, PV-MTR was significantly reduced up to 2.63% in CIS and 5.37% in RRMS (p < 0.0001). The MTR decreased towards the lateral ventricles with 0.18%/mm in CIS and 0.31%/mm in RRMS patients, relative to HCs. In RRMS, MTR-values adjacent to the ventricle and in PV-lesions correlated positively with CMT and negatively with EDSS. CONCLUSION: PV-MTR gradients are present from the earliest stage of MS, consistent with more pronounced microstructural WM-damage closer to the ventricles. The positive association between reduced CMT and lower MTR in PV-NAWM suggests a common pathophysiologic mechanism. Together, these findings indicate the potential use of multimodal MRI as refined marker for MS-related tissue changes.


Subject(s)
Demyelinating Diseases , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , White Matter , Brain , Cerebral Ventricles/pathology , Demyelinating Diseases/pathology , Humans , Magnetic Resonance Imaging , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Multiple Sclerosis, Relapsing-Remitting/pathology , White Matter/pathology
10.
Medicina (Kaunas) ; 58(3)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35334608

ABSTRACT

Background and Objectives: The neurofilament light chain (NfL) is a biomarker for neuro-axonal injury in various acute and chronic neurological disorders, including Alzheimer's disease (AD). We here investigated the cross-sectional and longitudinal associations between baseline serum NfL (sNfL) levels and cognitive, behavioural as well as MR volumetric findings in the Prospective Dementia Registry Austria (PRODEM-Austria). Materials and Methods: All participants were clinically diagnosed with AD according to NINCDS-ADRDA criteria and underwent a detailed clinical assessment, cognitive testing (including the Mini Mental State Examination (MMSE) and the Consortium to Establish a Registry for Alzheimer's Disease (CERAD)), the neuropsychiatric inventory (NPI) and laboratory evaluation. A total of 237 patients were included in the study. Follow-up examinations were done at 6 months, 1 year and 2 years with 93.3% of patients undergoing at least one follow-up. We quantified sNfL by a single molecule array (Simoa). In a subgroup of 125 subjects, brain imaging data (1.5 or 3T MRI, with 1 mm isotropic resolution) were available. Brain volumetry was assessed using the FreeSurfer image analysis suite (v6.0). Results: Higher sNfL concentrations were associated with worse performance in cognitive tests at baseline, including CERAD (B = −10.084, SE = 2.999, p < 0.001) and MMSE (B = −3.014, SE = 1.293, p = 0.021). The sNfL levels also correlated with the presence of neuropsychiatric symptoms (NPI total score: r = 0.138, p = 0.041) and with smaller volumes of the temporal lobe (B = −0.012, SE = 0.003, p = 0.001), the hippocampus (B = −0.001, SE = 0.000201, p = 0.013), the entorhinal (B = −0.000308, SE = 0.000124, p = 0.014), and the parahippocampal cortex (B = −0.000316, SE = 0.000113, p = 0.006). The sNfL values predicted more pronounced cognitive decline over the mean follow-up period of 22 months, but there were no significant associations with respect to change in neuropsychiatric symptoms and brain volumetric measures. Conclusions: the sNfL levels relate to cognitive, behavioural, and imaging hallmarks of AD and predicts short term cognitive decline.


Subject(s)
Alzheimer Disease , Alzheimer Disease/diagnostic imaging , Austria/epidemiology , Cross-Sectional Studies , Humans , Prospective Studies , Registries
11.
Life Sci Alliance ; 5(6)2022 06.
Article in English | MEDLINE | ID: mdl-35260473

ABSTRACT

Brain swelling occurs in cerebral malaria (CM) and may either reverse or result in fatal outcome. It is currently unknown how brain swelling in CM reverses, as brain swelling at the acute stage is difficult to study in humans and animal models with reliable induction of reversible edema are not known. In this study, we show that reversible brain swelling in experimental murine CM can be induced reliably after single vaccination with radiation-attenuated sporozoites as proven by in vivo high-field magnetic resonance imaging. Our results provide evidence that brain swelling results from transcellular blood-brain barrier disruption (BBBD), as revealed by electron microscopy. This mechanism enables reversal of brain swelling but does not prevent persistent focal brain damage, evidenced by microhemorrhages, in areas of most severe BBBD. In adult CM patients magnetic resonance imaging demonstrate microhemorrhages in more than one third of patients with reversible edema, emphasizing similarities of the experimental model and human disease. Our data suggest that targeting transcellular BBBD may represent a promising adjunct therapeutic approach to reduce edema and may improve neurological outcome.


Subject(s)
Brain Edema , Malaria, Cerebral , Animals , Blood-Brain Barrier/diagnostic imaging , Brain/diagnostic imaging , Brain/pathology , Brain Edema/diagnostic imaging , Brain Edema/etiology , Brain Edema/pathology , Edema/pathology , Humans , Malaria, Cerebral/pathology , Mice
12.
Mult Scler Relat Disord ; 57: 103353, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35158430

ABSTRACT

BACKGROUND: Prediction of disability progression in patients with MS (pwMS) is challenging. So far, scarce evidence exists suggesting knowledge about how cognitive performance may potentially improve prediction of physical impairment and disability progression in MS. Therefore, we wanted to assess the prognostic value of cognitive performance regarding physical impairment and disability progression in pwMS. METHODS: 85 patients (64% female; 60% relapse-remitting MS; mean age=36.78 ± 9.63 years) underwent clinical, neuropsychological (Brief Repeatable Battery for Neuropsychological Test (BRB-N)) and brain MRI (T1-weighted and T2-weighted FLAIR images) assessment at baseline and after an average of 7 years (SD=3.75) at follow-up. We assessed physical impairment and annualized disability progression (disability progression divided by follow-up duration) using the Expanded Disability Status Scale (EDSS). To compare patients with no or mild physical impairment (EDSS≤2.5) and patients with moderate to severe physical impairment (EDSS≥3.0), we used an EDSS score ≥3.0 as cut-off. Silent progression was defined by an EDSS worsening of at least 0.5 in the absence of relapses and inflammation in relapsing-remitting MS. RESULTS: In hierarchical regression models (method "STEPWISE", forward) performance in information processing speed was a significant and independent predictor of physical impairment (EDSS≥3.0) at follow-up (model R²=0.671, b=-1.46, OR=0.23, p=0.001) and annualized disability progression (adjusted model R²=0.257, ß=-0.26, 95% CI: -0.066, -0.008, p=0.012), in addition to demographics (age, education, individual follow-up time), clinical (EDSS, disease duration, clinical phenotype, annualized-relapse-rate) and MRI measures (brain volumes and T2-lesion load). In a MANCOVA controlled for age, disease duration and individual follow-up time, worse baseline performance in information processing speed was found in patients with higher EDSS at follow-up (m=-1.91, SD=1.18, p<0.001) and silent progression (m=-2.19, SD=1.01, p=0.038). CONCLUSION: Performance in information processing speed might help to identify patients at risk for physical impairment. Therefore, neuropsychological assessment should be integrated in clinical standard care to support disease management in pwMS.


Subject(s)
Cognition Disorders , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Adult , Cognition , Disability Evaluation , Disease Progression , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Neuropsychological Tests , Prognosis
13.
Aging (Albany NY) ; 14(1): 240-252, 2022 01 13.
Article in English | MEDLINE | ID: mdl-35025758

ABSTRACT

Impaired kidney function is associated with structural brain changes and cognitive dysfunction. In the aging kidney, hemodynamic and structural alterations reduce the glomerular filtration rate (eGFR). Little is known about differences between men and women regarding decline of kidney function and brain damage. In this community-based study, we assessed associations between the eGFR, focal and diffuse brain abnormalities and cognitive functions. Sex-specific effects were analyzed by interaction terms eGFR x sex on brain structure and cognition. Interactive effects were assessed using mixed-models -stratified by sex. Overall, 196 women and 129 men (median age 68 years and mean eGFR 73.8±14.9 ml/min/1.73m2) were included. Significant associations existed between eGFR and cortical volume (ß: 1.53E-04; SE: 6.72E-05; p=0.023 for neocortex). Sex exerted a significant interactive effect. Only in men, eGFR related to cortical volumes of all lobes and of deep gray matter structures (p= 0.001 for total gray matter, p=0.0004 for neocortex). In the whole group eGFR was not associated with cognition, but men with lower eGFR performed worse on tests for executive function, which, after FDR correction, was not significant. We conclude, that in community-dwelling middle-aged and elderly individuals, reduced eGFR relates to brain volume loss in men but not in women.


Subject(s)
Brain/anatomy & histology , Cognition/physiology , Glomerular Filtration Rate/physiology , Kidney/physiology , Stroke/prevention & control , Aged , Austria/epidemiology , Cross-Sectional Studies , Female , Humans , Independent Living , Male , Middle Aged
14.
Mult Scler ; 28(1): 61-70, 2022 01.
Article in English | MEDLINE | ID: mdl-33870779

ABSTRACT

BACKGROUND: Thalamic atrophy is proposed to be a major predictor of disability progression in multiple sclerosis (MS), while thalamic function remains understudied. OBJECTIVES: To study how thalamic functional connectivity (FC) is related to disability and thalamic or cortical network atrophy in two large MS cohorts. METHODS: Structural and resting-state functional magnetic resonance imaging (fMRI) was obtained in 673 subjects from Amsterdam (MS: N = 332, healthy controls (HC): N = 96) and Graz (MS: N = 180, HC: N = 65) with comparable protocols, including disability measurements in MS (Expanded Disability Status Scale, EDSS). Atrophy was measured for the thalamus and seven well-recognized resting-state networks. Static and dynamic thalamic FC with these networks was correlated with disability. Significant correlates were included in a backward multivariate regression model. RESULTS: Disability was most strongly related (adjusted R2 = 0.57, p < 0.001) to higher age, a progressive phenotype, thalamic atrophy and increased static thalamic FC with the sensorimotor network (SMN). Static thalamus-SMN FC was significantly higher in patients with high disability (EDSS ⩾ 4) and related to network atrophy but not thalamic atrophy or lesion volumes. CONCLUSION: The severity of disability in MS was related to increased static thalamic FC with the SMN. Thalamic FC changes were only related to cortical network atrophy, but not to thalamic atrophy.


Subject(s)
Disabled Persons , Multiple Sclerosis , Atrophy/pathology , Humans , Magnetic Resonance Imaging , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Thalamus/diagnostic imaging , Thalamus/pathology
15.
Clin Infect Dis ; 75(1): 11-18, 2022 08 24.
Article in English | MEDLINE | ID: mdl-34905777

ABSTRACT

BACKGROUND: Cerebral malaria in adults is associated with brain hypoxic changes on magnetic resonance (MR) images and has a high fatality rate. Findings of neuroimaging studies suggest that brain involvement also occurs in patients with uncomplicated malaria (UM) or severe noncerebral malaria (SNCM) without coma, but such features were never rigorously characterized. METHODS: Twenty patients with UM and 21 with SNCM underwent MR imaging on admission and 44-72 hours later, as well as plasma analysis. Apparent diffusion coefficient (ADC) maps were generated, with values from 5 healthy individuals serving as controls. RESULTS: Patients with SNCM had a wide spectrum of cerebral ADC values, including both decreased and increased values compared with controls. Patients with low ADC values, indicating cytotoxic edema, showed hypoxic patterns similar to cerebral malaria despite the absence of deep coma. Conversely, high ADC values, indicative of mild vasogenic edema, were observed in both patients with SNCM and patients with UM. Brain involvement was confirmed by elevated circulating levels of S100B. Creatinine was negatively correlated with ADC in SNCM, suggesting an association between acute kidney injury and cytotoxic brain changes. CONCLUSIONS: Brain involvement is common in adults with SNCM and a subgroup of hospitalized patients with UM, which warrants closer neurological follow-up. Increased creatinine in SNCM may render the brain more susceptible to cytotoxic edema.


Subject(s)
Brain Edema , Malaria, Cerebral , Malaria, Falciparum , Adult , Brain/diagnostic imaging , Brain/pathology , Brain Edema/diagnostic imaging , Brain Edema/etiology , Brain Edema/pathology , Coma/complications , Creatinine , Humans , Malaria, Cerebral/complications , Malaria, Falciparum/complications
16.
Hum Mol Genet ; 31(9): 1531-1543, 2022 05 04.
Article in English | MEDLINE | ID: mdl-34791242

ABSTRACT

The interocular distance, or orbital telorism, is a distinctive craniofacial trait that also serves as a clinically informative measure. While its extremes, hypo- and hypertelorism, have been linked to monogenic disorders and are often syndromic, little is known about the genetic determinants of interocular distance within the general population. We derived orbital telorism measures from cranial magnetic resonance imaging by calculating the distance between the eyeballs' centre of gravity, which showed a good reproducibility with an intraclass correlation coefficient of 0.991 (95% confidence interval 0.985-0.994). Heritability estimates were 76% (standard error = 12%) with a family-based method (N = 364) and 39% (standard error = 2.4%) with a single nucleotide polymorphism-based method (N = 34 130) and were unaffected by adjustment for height (model II) and intracranial volume (model III) or head width (model IV). Genome-wide association studies in 34 130 European individuals identified 56 significantly associated genomic loci (P < 5 × 10-8) across four different models of which 46 were novel for facial morphology, and overall these findings replicated in an independent sample (N = 10 115) with telorism-related horizontal facial distance measures. Genes located nearby these 56 identified genetic loci were 4.9-fold enriched for Mendelian hypotelorism and hypertelorism genes, underlining their biological relevance. This study provides novel insights into the genetic architecture underlying interocular distance in particular, and the face in general, and explores its potential for applications in a clinical setting.


Subject(s)
Genome-Wide Association Study , Hypertelorism , Genetic Loci , Genome-Wide Association Study/methods , Humans , Hypertelorism/genetics , Polymorphism, Single Nucleotide/genetics , Reproducibility of Results
17.
J Neurol Neurosurg Psychiatry ; 93(1): 14-23, 2022 01.
Article in English | MEDLINE | ID: mdl-34509999

ABSTRACT

OBJECTIVES: It has been suggested that diffusion tensor imaging (DTI) measures sensitive to white matter (WM) damage may predict future dementia risk not only in cerebral small vessel disease (SVD), but also in mild cognitive impairment. To determine whether DTI measures were associated with cognition cross-sectionally and predicted future dementia risk across the full range of SVD severity, we established the International OPtimising mulTImodal MRI markers for use as surrogate markers in trials of Vascular Cognitive Impairment due to cerebrAl small vesseL disease collaboration which included six cohorts. METHODS: Among the six cohorts, prospective data with dementia incidences were available for three cohorts. The associations between six different DTI measures and cognition or dementia conversion were tested. The additional contribution to prediction of other MRI markers of SVD was also determined. RESULTS: The DTI measure mean diffusivity (MD) median correlated with cognition in all cohorts, demonstrating the contribution of WM damage to cognition. Adding MD median significantly improved the model fit compared to the clinical risk model alone and further increased in all single-centre SVD cohorts when adding conventional MRI measures. Baseline MD median predicted dementia conversion. In a study with severe SVD (SCANS) change in MD median also predicted dementia conversion. The area under the curve was best when employing a multimodal MRI model using both DTI measures and other MRI measures. CONCLUSIONS: Our results support a central role for WM alterations in dementia pathogenesis in all cohorts. DTI measures such as MD median may be a useful clinical risk predictor. The contribution of other MRI markers varied according to disease severity.


Subject(s)
Dementia/diagnostic imaging , Diffusion Tensor Imaging/methods , Cerebral Small Vessel Diseases/diagnostic imaging , Cognition , Cognitive Dysfunction/diagnostic imaging , Cohort Studies , Humans , Prospective Studies , White Matter/diagnostic imaging
18.
Aging (Albany NY) ; 13(24): 25729-25738, 2021 12 18.
Article in English | MEDLINE | ID: mdl-34923481

ABSTRACT

OBJECTIVE: Serum neurofilament light (sNfL) is a promising marker for neuro-axonal damage and it is now well known that its levels also increase with higher age. However, the effect of other determinants besides age is still poorly investigated. We therefore aimed to identify factors influencing the sNfL concentration by analysing a large set of demographical, life-style and clinical variables in a normal aging cohort. METHODS: sNfL was quantified by single molecule array (Simoa) assay in 327 neurologically inconspicuous individuals (median age 67.8±10.7 years, 192 female) who participated in the Austrian Stroke Prevention Family Study (ASPS-Fam). Random forest regression analysis was used to rank the association of included variables with sNfL in the entire cohort and in age-stratified subgroups. Linear regression then served to identify factors independently influencing sNfL concentration. RESULTS: Age (ß=0.513, p<0.001) was by far the most important factor influencing sNfL, which was mainly driven by individuals ≥60 years. In age stratified sub-groups, body mass index (BMI) (ß=-0.298, p<0.001) independently predicted sNfL in individuals aged 38-60 years. In individuals ≥60 years, age (ß=0.394, p<0.001), renal function (ß=0.376, p<0.001), blood volume (ß=-0.198, p=0.008) and high density lipoprotein (HDL) (ß=0.149, p=0.013) were associated with sNfL levels. CONCLUSIONS: Age is the most important factor influencing sNfL concentrations, getting increasingly relevant in elderly people. BMI further influences sNfL levels, especially at younger age, whereas renal function gets increasingly relevant in the elderly.


Subject(s)
Aging/physiology , Biomarkers/blood , Healthy Volunteers/statistics & numerical data , Intermediate Filaments , Neurofilament Proteins/blood , Adult , Age Factors , Aged , Austria , Axons/physiology , Body Mass Index , Cohort Studies , Female , Humans , Male , Middle Aged
19.
Brain Sci ; 11(11)2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34827490

ABSTRACT

MRI studies have consistently identified atrophy patterns in Alzheimer's disease (AD) through a whole-brain voxel-based analysis, but efforts to investigate morphometric profiles using anatomically standardized and automated whole-brain ROI analyses, performed at the individual subject space, are still lacking. In this study we aimed (i) to utilize atlas-derived measurements of cortical thickness and subcortical volumes, including of the hippocampal subfields, to identify atrophy patterns in early-stage AD, and (ii) to compare cognitive profiles at baseline and during a one-year follow-up of those previously identified morphometric AD subtypes to predict disease progression. Through a prospectively recruited multi-center study, conducted at four Austrian sites, 120 patients were included with probable AD, a disease onset beyond 60 years and a clinical dementia rating of ≤1. Morphometric measures of T1-weighted images were obtained using FreeSurfer. A principal component and subsequent cluster analysis identified four morphometric subtypes, including (i) hippocampal predominant (30.8%), (ii) hippocampal-temporo-parietal (29.2%), (iii) parieto-temporal (hippocampal sparing, 20.8%) and (iv) hippocampal-temporal (19.2%) atrophy patterns that were associated with phenotypes differing predominately in the presentation and progression of verbal memory and visuospatial impairments. These morphologically distinct subtypes are based on standardized brain regions, which are anatomically defined and freely accessible so as to validate its diagnostic accuracy and enhance the prediction of disease progression.

20.
Biomolecules ; 11(9)2021 08 25.
Article in English | MEDLINE | ID: mdl-34572477

ABSTRACT

Background: Oxidative stress-induced neuronal damage in multiple sclerosis (MS) results from an imbalance between toxic free radicals and counteracting antioxidants, i.e., antioxidative capacity (AOC). The relation of AOC to outcome measures in MS still remains inconclusive. We aimed to compare AOC in cerebrospinal fluid (CSF) and serum between early MS and controls and assess its correlation with clinical/radiological measures. Methods: We determined AOC (ability of CSF and serum of patients to inhibit 2,2'-azobis(2-amidinopropane) dihydrochloride-induced oxidation of dihydrorhodamine) in clinically isolated syndrome (CIS)/early relapsing-remitting MS (RRMS) (n = 55/11) and non-inflammatory neurological controls (n = 67). MS patients underwent clinical follow-up (median, 4.5; IQR, 5.2 years) and brain MRI at 3 T (baseline/follow-up n = 47/34; median time interval, 3.5; IQR, 2.1 years) to determine subclinical disease activity. Results: CSF AOC was differently regulated among CIS, RRMS and controls (p = 0.031) and lower in RRMS vs. CIS (p = 0.020). Lower CSF AOC correlated with physical disability (r = -0.365, p = 0.004) and risk for future relapses (exp(ß) = 0.929, p = 0.033). No correlations with MRI metrics were found. Conclusion: Decreased CSF AOC was associated with increased disability and clinical disease activity in MS. While our finding cannot prove causation, they should prompt further investigations into the role of AOC in the evolution of MS.


Subject(s)
Antioxidants/metabolism , Disease Progression , Multiple Sclerosis/cerebrospinal fluid , Multiple Sclerosis/pathology , Severity of Illness Index , Adult , Case-Control Studies , Disability Evaluation , Female , Follow-Up Studies , Humans , Magnetic Resonance Imaging , Male , Multiple Sclerosis/blood , Multiple Sclerosis/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...